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Consider a lens illuminated by an ISI beam 
and focused onto a target. Fourier optics tells us 
that the spatial distribution of the electric field at 
the lens is a direct analog of the wavenumber spec-
trum of the electric field at the target. For the mo-
ment, assume that the beam is normal to the target. 
The extent of the field in wavenumber space at the 
target is due entirely to the geometry of the focus-
ing optics: the diameter of the lens D, the focal 
length of the lens f, or the F/# of the lens F=f/D. As-
sume further that the intensity profile of the beam at 
the lens is such that it uniformly covers the lens sur-
face, is uniform in a statistical-time-average sense, 
and is characterized by the number of spatial co-
herence zones, Nz, that cover the lens surface. The 
resulting envelope of the electric field or intensity 
at the target will have a width Rspot = NzFλ0, or Nz 
times the diffraction limited spot size of the entire 
lens, Fλ0. The spatial width of the coherence zone 
at the lens surface is D/Nz. This electric field struc-
ture at the lens results in a spectral width of the 
electric field coherence zones at the target surface 
of ∆kI≈2π/Fλ0 as well as the total spectrum width 
there, kM=Nz∆kI =2πNz/Fλ0. Thus, the spectrum va-
ries from –kM/2<k<+kM/2 where k is the wave-
number of the field at the target.
 (The preceding limits assume that the angle 
θ subtended by the lens is small enough that 
sinθ≈θ. More generally, the spatial coherence zone 
at position -D/2<x<D/2 and width d at the lens will 
result in an electric  field at the target at wave-
number k=k0sin(θx) (where θx=atan(x/f) and k0 is 
the laser wavenumber 2π/λ0) and width 
∆kI=k0(sin[atan((x-d/2)/f)]-sin[atan((x+d/2)/f)]).)

Multiple Beams:
We can consider multiple beams in the limit 

that they are immediately adjacent to one another; 
this is equivalent to shortening the F/# of the incid-
ent lens optic to Fmult=f/NbD=F/Nb where F is the 

F/# of the single lens. This results in the width of 
the k-spectrum of the electric field at the target in-
creasing by the factor Nb, while the incoherent zone 
width ∆kI remains the same (the total number of co-
herence zones is multiplied by Nb). This leads to 
higher frequency structure in both the electric field 
and the intensity. When this shorter wavelength 
structure is averaged over a region larger than the 
smallest wavelengths,  smoothing of the resulting 
beams occurs. We will consider this effect in more 
detail later.
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Fig. 1. Focusing optics produce the Fourier trans-
form of the incident beam on the target.
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I.1-1D: Intensity structure:
Given the k-spectrum of the electric field at 

the target, the intensity can be found as its convolu-
tion:
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In the simulation code, the integral is effectively re-
placed by a summation (the Discrete Fourier Trans-
form) as in:

  

I k E Ej j
j

( ) *
l l= +∑ (2)

where l = kl/∆kI varies from -Nz+1 to Nz-1, and the 
limits of the sum over j are from j= 1 –Nz/2-
MIN(l,0) to j=Nz/2-MAX(l,0).

Now if Ej are complex random values r1 + 
ir2 where r1 & r2 are instances of a Gaussian ran-
dom distribution of width unity, then Ej is a vector 
in the complex plane with amplitude â and a uni-
formly distributed random phase between 0 and 2π. 
For any l≠0, Ej

*Ej+l will also have a random phase 
and amplitude ‹â›2. Summing n of these numbers 
will (on average) give a vector of amplitude n1/2‹â›2 
with a random phase. For each l, the number of 
sums given by Eqn. (2) is simply Nz-|l|. Thus the 

(average) amplitude of the intensity from (2) can be 
written:

  

I k E E N âj j
j

z( ) *
l l l= = −+∑ 2  (3)

where ‹› denotes an average element from the sta-
tistical ensemble. A special case exists for l=0 since 
the products Ej

*Ej are all real and positive; the sum 
there is Nz‹â2›. Finally, since the l=0 term also 
gives the average value of the intensity Iavg, we 
have: Iavg = ∫dx‹I(x)›/∫dx  = ‹I(k=0)›=Nz‹â2›; thus 
‹â2›=Iavg/Nz. However, note the subtle distinction 
between ‹â›2 and ‹â2›  -- they are not equal as the 
operations of ensemble-averaging and raising to an 
power do not commute.  For the probability distri-
bution function we consider here, p(I) = exp(-
I/Iavg), which gives ‹I›=Iavg and thus ‹â2›=Iavg/Nz as 
noted above; but as p(|E|) = 2(|E|/Iavg)exp(-|E|2/Iavg), 
‹|E|› = ‹â› = √(π‹â2›)/2 = (1/2)(πIavg/Nz)1/2 (see Ap-
pendix A and fig. 2)
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where κ≡k/kM . As we can see from fig. 2, this for-
mula matches the simulation model very well, when 
averaged over a suitable time, and when the simula-
tion is set up to resolve all the modes in the intensi-
ty spectrum. 

Before leaving this section, I want to point 
out two things. First, note that the effect of adding 
multiple beams is to simply to increase the number 
of incoherence zones Nz by the factor Nb (number 
of beams), thus reducing each Fourier component 
of the intensity by the square root of the number of 
beams, as expected. However, multiple beams also 
multiply the extent of the intensity spectrum by Nb.

Secondly, note that the actual (time average) 
amplitude of an intensity perturbation at a given 
wavelength λ=2π/|kl| is twice the quantity given in 
eqn. 4, because one must add both the positive and 
negative wavenumber contributions.

I.2A-1D The problem of incomplete resolu-
tion: Inadequate Fourier resolution

It is a common problem in the simulation 
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Fig. 2: The solid dark line shows the time averaged 
simulation results after 1000 coherence times, and 
the broken red line shows the analytic predictions, 
for Nz=75, Iavg=1 (eqn. 4). The wavenumber index 
corresponds to l in the text.

Theory:
     ( eqn (4) )
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that we cannot resolve all the modes  generated by 
the laser beam. For instance, if a simulation has a 
transverse size (Xlen) smaller than the spot size of 
the beam, the modes with wavelength Xlen<λ<Rspot 
(and others not fitting the periodicity of the mesh) 
cannot be resolved. In general, in a simulation of 
size X len with NX points along x  (grid size 
∆x=Xlen/N Y) and periodic boundary conditions 
(needed by ISI and/or Fourier transforms, and in 
any case more general than predefined amplitude or 
gradient boundaries), the Fourier-space grid will 
have extent -kX/2<k<kX/2 and resolution ∆kx where 
∆kx = 2π/Xlen and kX=2π/∆x=NX∆kx. This resolution 
may not match the resolution needed for the field, 
e.g. in general, ∆kx≠∆kI. In particular we consider 
here the case of inadequate resolution such that 
∆kx>∆kI (i.e., Xlen<Rspot). Then each Fourier mode 
in the code must represent Nr=∆kx/∆kI=Rspot/Xlen 
modes (assume for the moment Nr is integer; the re-
sult will generalize to the non-integer case). A typi-
cal value of Nr in the code would be 7.5 
(Rspot=750µm [Nike], Xlen=100µm).

 There are many ways to model this. One is 
to simply (linearly) interpolate the real spectrum at 
the places where we do  resolve the field (i.e., 
kxi=i∆kx, i=-NX,...,NX). Another way is to use the 
field averaged over the cell ∆kx in Fourier space. 

Consider the first case, that of simple inter-
polation (i.e., the amplitude of the electric field is 
“sampled” at the point in k-space at which it is 
centered). Denoting É as the field resolvable in the 
simulation, we have: É(kxi)=E(kI=kxi). The change 
in the number of modes, however, implies that the 
average intensity would change, unless we renor-
malize the field amplitudes, because we no longer 
have Nz modes but instead Nz/Nr modes. In this case 
‹É›2=‹â’›2=(πIavg/4)Nr/Nz and eqn (3) becomes:

I k N N i â
N N

I
xi z r

z r

avg( ) = − ′ = −2 1
4

κ π
(5)

Consider the second way, and average the 
field amplitude over the Fourier grid cell ∆kx: 
É(kxi)= ∫dkx’E(kx’)/∆kx=(∆kI/∆kx)ΣΕ(kxi+n∆kI), 
where the summation is over the Nr nearest modes. 
Assuming that the sum is again over statistically 
identical but mutually incoherent fields, 
‹É(kxi)›~Nr1/2‹E(kx)›=Nr1/2â. â is still determined by 
the average intensity and the (total) number of 

modes: â=(πIavg/4Nz)1/2. However, we have also re-
duced the number of terms in the sum of eqn (2) to 
Nz’ = Nz/Nr. Thus Eqn. (3) becomes:
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4
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...which is identical to eqn. (5). So in each case the 
necessity of normalizing the electric field amplitude 
to produce the correct average intensity, in tandem 
with our insistence that each electric field compon-
ent is statistically identical, leads us to the same so-
lution. Compared to the perfectly resolved case 
(eqn (4)), the individual intensity fluctuations are  
larger by a factor of Nr . These formulas (5) or 
(6) represent what is in the FAST2D code now.

This increase in mean intensity fluctuation 
level is the result of preserving the total rms fluc-
tuation and average intensity while keeping the an-
satz that each electric field mode amplitude is iden-
tical. One way around this Nr  increase in the am-
plitude would be to simply interpolate the mode 
amplitudes, but drop the constraint of producing the 
correct average intensity. We would find the intens-
ity spectrum:

I k N N i â
N N

I
yi z r

z r

avg( ) = − = −2 1
4

κ π
(6a)

The correct average intensity can still be recovered 
by simply adding the appropriate (constant) amount 
to the DC mode (k=0): instead of ‹I(k=0)›= 
Nz‹â2›/Nr, add the amount Iavg(1-1/Nr). In this meth-
od, the individual intensity fluctuations are smaller 
by a factor of Nr compared to the resolved case 
(eqn (4)), and a factor of Nr smaller than the cur-
rent methods (5) and (6).

Finally, the alteration in individual mode 
amplitude produced by the methods (5-6a) can be 
avoided by directly using the intensity spectrum 
given by eqn. (4) no matter what  resolution we 
might have. Then (if needed) add the appropriate 
DC contribution to preserve the average intensity. 
This method preserves the average intensity and the 
individual intensity fluctuation level, at the expense 
of reducing the total rms intensity fluctuation level 
(as there are fewer modes represented).

(In the last two methods, there should prob-
ably be a random, statistical nature to this add-on 
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constant -- since this DC term is actually being 
made up of all from those Nr-1 modes that we failed 
to resolve during the interpolation. Also, it may be 
appropriate to reduce the mean variance of the indi-
vidual mode amplitude (by ~Nr-1/2) to reflect the ef-
fect of averaging the adjacent unresolved modes.) 

I.2B-1D:The problem of incomplete resolu-
tion: Inadequate spatial resolution

Another common problem, particularly 
when using multiple beams, is not having enough 
spatial resolution to resolve the high frequency spa-
tial structure (remember, the smallest intensity    
wavelength is expected to be of order Fλ0, where F 
in this case is represents the total beam cluster). Let 
us denote ∆ as our smallest resolvable spatial extent 
(n.b.: ∆ may be the same size as --or larger than-- 
the mesh spacing ∆x). Then the resolved intensity at 
any scale due to this minimum resolution is:
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where the subscript “R” refers to the resolved in-
tensity and the subscript “E” refers to the exact in-
tensity, and Ik are the Fourier coefficients of the 
“exact” intensity. Thus, averaging the exact intensi-
ty over the distance ∆ is equivalent to multiplying 

the Fourier coefficients of the intensity by the factor 
2sin(k∆/2)/k∆. (see fig. 3). Note that at  k∆=nπ for 
integer n greater than zero, the multiplier is zero.

What about the high-frequency end of the k 
spectrum that can’t be resolved in the simulation, 
e.g. |k|>π/Xlen? These values of k are aliased to val-
ues of k that do appear in the simulation. The rule 
for such aliasing is that the actual k is mapped to a 
resolvable k given by:

k k k k kRES M M M= − −1
2

1
2( )MOD (8)

where MOD is the modulo function. Thus the in-
tensity at each resolvable wavenumber, k, is made 
up of the weighted sum of the intensity at wave-
numbers k, kM-k, kM+k, 2kM-k, ... 

II.A-2D: The actual (two dimensional) 
              illumination spectrum

Now we concern ourselves with the actual 
illumination spectrum with two transverse dimen-
sions (i.e., the “real world” case). Again, we assume 
that  the k-spectrum of the electric field at the target 
is known (as it is simply equivalent to the spatial-
distribution of the electric field at focusing lens). 
And again, as in the development of eqn. (1),  the 
intensity can be found as its convolution:
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and now the discrete summation is also in two 
transverse directions:

  

I k k E En
m

j m j m n
j

( , ) ,
*

,l l= ∑ ∑ + + (10)

This summation is determined by the number of 
modes in the sum, since each summand is statisti-
cally identical. The number of sums is given 
(geometrically) by the area of overlap of two circles 
of width k M / 2 , separated by a distance 
|k|=√(kx2+ky2). This area of overlap is the number 
of sums in eqn. (10) (in units of ∆k2 (we assume 
∆k≡∆kx=∆ky)), and is given by:
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fig. 3: The solid line is the weighting factor 
2sin(k∆/2)/k∆ as a function of k∆, and the dotted 
line is its envelope, 2/k∆.
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 where κ≡k/kM varies from 0 to 1. So if each indi-
vidual electric field amplitude is â, the amplitude of 
the intensity fluctuation at a given κ  = 
√(kx2+ky2)/kM is:

  

I k k E E N ân
m

j m j m n
j

s( , ) ,
*

,l l= = ( )∑ ∑ + + κ 2

(13)
Again, the special case exists at κ=0, where the sum 
is coherent and the mean intensity is the average in-
tensity: Ns(κ=0)‹â2›=(kM/∆k)2π‹â2›/4=Iavg. This de-
termines ‹â2›: ‹â2›=4Iavg/πNz

2, (Nz=kM/∆k) and by 
extension (see discussion previous to eqn. (4) and 
Appendix A) ‹â›2=Iavg/Nz2. So the average intensity 
fluctuation at wavelength κ  is given by:

I
I

N
avg

z
( ) sinκ π κ κ κ= − [ ] − −−2 2 1

2
1 2 (14)

where Nz=kM/∆k is the number of coherence zones 
measured across a 1D slice of the lens (the total 
number of coherence zones is ~Nz

2). Note that for 
small (but finite) κ , ‹I(κ⇒ 0)›⇒ π 2Nz( ) . This 

spectrum as a function of κ is very similar to the 1D 
case, except that it’s smaller (per mode) by a factor 
~Nz

1/2.

II.B-2D: Properly Accounting for 2D effects 
with a 1D treatment

The major difference between the 2D and the 
1D treatment of ISI is that the number of modes 
with large |k| is larger in 2D: the number of modes 
with a given wavenumber |k| increases linearly as 
~|k|. One (arbitrary) way to take this into account in 
1D is to preserve the relative σrms (compared to the 
full 2D distribution) at a given wavenumber. The 
standard deviation of the 2D distribution is calculat-
ed straightforwardly (using eqn. (14), and assuming 
a round focusing lens):
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The integrand is thus simply proportional to the 
σrms for each mode in the 2D distribution. For com-
parison, the 1D distribution gives (using eqn. 4):
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fig. 4: The 2D spectrum of intensity fluctuations as 
a function of wavenumber κ=sqrt(kx2+ky2)/kM (in 
red). The 1D spectrum (eqn.4) is shown for com-
parison; both use Nz=1 for comparison purposes.
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The total σrms in 2D is the same as in 1D, but since 
there are many more modes in 2D, the typical σrms 
in any given individual mode is much lower.

The 1D distribution can be “renormalized” to 2D 
by requiring that (i.a) the individual 1D mean-in-
tensity fluctuation in each mode is equal to the 2D 
mean-intensity-fluctuation; and (i.b) the 1D total 
σrms is the same as the 2D σrms. Alternatively, we 
can (ii) create a new 1D distribution by averaging 
the 2D distribution in k-space to obtain a 
“representative” distribution.

Method (i) would be used to scale a 1D 
(transverse) simulation to a 2D (transverse) simula-
tion; in this case the imprint at each wavenumber of 
a 1D (transverse) simulation would be scaled by the 
multiplier composed of eqn(14)/eqn(4):
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κ
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1 2
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2 2 2 1
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= − [ ] − −
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(17)
(see figure 5); this multiplier is of order unity ex-
cept for the Nz-1/2 factor. Using this expression to 
renormalize the mode amplitudes and summing 
them over the resulting 2D distribution also yields 
the correct total σrms.

Method (ii), creating a new 1D distribution by 
averaging the 2D distribution in |k|-space, could be 
used if we wished to generate a 2-D like modal 
σrms in a 1D (transverse) simulation directly. Re-
quiring that the intensity fluctuation amplitude at κx 
reflect the total 2D fluctuation level at κ , the 1D 
“equivalent” of the 2D field would be:

I

N
I
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x x x x
z

avg
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− − −( )−2 2 1
4

1 2
(18)

This has been normalized by requiring that the total  
σrms be the same as in 2D. It’s not clear how to get 
this spectral shape simply by generating the  elec-
tric fields as we did before -- the electric field com-
ponents are no longer independent of κx. Probably 
the easiest way is to assemble the field with the typ-
ical 1D intensity distribution (sec. I), then apply a 
1D-to-2D transform in Fourier space by using the 
ratio of eqn (18) to eqn (4) (see also fig. 6):

I

I
x D mock
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x x x x( )

( )
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κ π κ κ κ

π κ
2
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1 24 2 2 1
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−
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− − −( )
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(which is just π κNz x  times eqn. (17)). As before, 
missing modes (due to incomplete resolution in 
Fourier space) can be accounted for by normalizing 
the resulting field to ensure that the total σrms is 

preserved.
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fig. 5: The function converting 1D imprint to 2D, as 
a function of wavenumber κ  (c.f. eqn. 17).

fig. 6: The normalization function (eqn (19)) ap-
plied to a 1D distribution spectrum, in order to get 
a 2D intensity distribution spectrum.



Appendix A
The distribution function of the electric field magni-
tude can be derived from the distribution function 
of the intensity using the cumulative distribution 
function (e.g., B.W. Lindgren Statistical Theory 
(2nd Ed.) p. 69 (1968), or any basic text on statis-
tics). In general, we can equate the two cumulative 
distribution functions (e.g., F(X)), which are de-
fined from the (density) distribution functions (e.g., 
p(x)) as:

F X dx p x
X

( ) ( )≡
−∞
∫ (A.1)

In the case under consideration here, we know the 
intensity distribution function p(I), and we wish to 
find the electric field distribution function p(|E|). 
Since p(I) = exp[–I/Iavg]/Iavg, eqn. (A.1) gives 
FI(I)= 1-exp[–I/Iavg]/Iavg, which is equal to the cu-

mulative electric-field distribution: F|E|(|E|)=1-
exp[–|E|2/Iavg]/Iavg. (Iavg≡‹I›.) The probability densi-
ty function p(|E|) is found from the cumulative dis-
tribution through differentiation as:

p E
dF

d E

E

I
eE

E

avg

E Iavg( )
/= = −

2
2

(A.2)

(This has been normalized using the requirement 
that the total probability is unity). Furthermore, the 
average value of |E|, ‹|E|› is found as the first mo-
ment of the probability density function:

E d E E p E Iavg= =
∞

∫
0

2
( )

π
(A.3)

We note that, although the average value of the in-
tensity distribution is (by definition) Iavg, the aver-
age value of the electric field distribution is not 
simply Iavg1/2, but is instead only about 89% of that 
value.

Attachment A
The IDL function implementing the ISI model, similar to that used in the FAST2D code, and used for the 
comparisons above (fig. 2).

function ISIS2, Nbeams, Nmodes, NMX, seed, AVINT=AVINT, debug=debug, $
           nt1=nt1, verbose=verbose, eef=eef
;+
; NAME:
;   isis2
;
; CALLING SEQUENCE:
;   intensity = isis2(Nbeams, Nmodes, Nmax, SEED)
; PURPOSE:
;  generate an ISI profile of length NMX, return in array IFlux
;
; FUNCTION RETURNS:
;  IFLUX:      array of size NMX that is output as isi intensity
;
; PARAMETERS:
;  Nbeams:     Number of beams that we'll be adding (?)
;  NMODES:     Integer number of ISI modes (in k space) of EACH beam
;              curiously, they will be arranged from k=[0 : NMODES-1], 
;              e.g. biased to k.ge.0 in Fourier space. Not that this should matter.
;  NMX:        Integer size of output Iflux vector
;  seed:       Random number seed. (should be provided so that it isn't reset to same
;               value on every call)
;
; OPTIONAL PARAMETERS
;  Avint:      Average intensity (Def = 1.0)
;  nt1:        Number of total modes per resolved mode (def = 1.0)
;                 (In practice, this will be Y_focal/Y_length)
;  verbose:    Verbose flag (def=0); if nonzero, debugging notices get printed
;  debug:      debug flag (def = 0)
;  eef:        The electric field
;
; HISTORY:
;   programmed circa 04 Nov 1999 : in preparation for APS/DPP 99 confernce
;   modified from isis.pro on 04 Jan 2000 : testing out new ideas of
;   multiple beams & averaging.
;-
if n_elements(avint)   eq 0 then avint   = 1.0
if n_elements(debug)   eq 0 then debug   = 0
if n_elements(nt1)     eq 0 then nt1     = 1.0
if n_elements(verbose) eq 0 then verbose = 0
; ---------------------------
NmodeTot = Nmodes * Nbeams
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; find Np = 2**MM such that Np >(2*NmodeTot) .and. Np >= Nmx
; then Nspace = Np/Nmx
MM = FIX( ALOG(NmodeTot)/ALOG(2.) + 2 ) > FIX( ALOG(Nmx)/ALOG(2.))
if (NP lt Nmx) then NP = NP*2
NSPACE = NP/NMX  ; I think this is guarranteed to be integer
if verbose ne 0 then begin
    print,'In isis2: using vector of length ',np,' to generate length ',nmx
    print,' -- nspace = ',nspace,' averaging points'
endif
; ---------------------------------------------------------------------
; construct a random amplitude distribution in Fourier space
; for wavenumbers corresponding to indices NP/4 to NP/4+NmodeTot
; ---------------------------------------------------------------------
eef = complexarr(np)
eef(0) = CoMPLeX(randomn(seed, Nmodetot), randomn(seed, Nmodetot))
; add in effects of other modes not resolved here
if (nt1 gt 1.0) then begin
   for ijk = 2, nt1 do begin
       eef(0) = eef(0:*) + CoMPLeX(randomn(seed, Nmodetot), randomn(seed, Nmodetot))
   endfor
   if nt1 mod 1.0 gt 1.E-4 then begin
       eef(0) = eef(0:*) + $
            (nt1-fix(nt1))*CoMPLeX(randomn(seed, Nmodetot), randomn(seed, Nmodetot))
   endif
endif
eef = eef/sqrt(2.*Nmodetot*nt1)
; -------------------------------------------------------------------
;  NOTE: Normalization of 1./NP is applied in direction=-1
; (from IDL online help:
;        A normalization factor of 1/N, where N is the
;        number of points, is applied during the forward
;        transform.)
sav = abs( NP*fft(eef, -1) )^2
; -------------------------------------------------------------------
;  average every Nspace points, put it into IFlux
indx = indgen(Nmx)*nspace
Iflux = sav(indx) ;  > 0.
if Nspace gt 1 then begin
  for ijk = 1, Nspace-1 do begin
     Iflux = Iflux + sav(indx + ijk)
  endfor
  Iflux = Iflux / float(Nspace)
endif
; -------------------------------------------------------------------
Iflux = Iflux * avint
; -------------------------------------------------------------------
if debug ne 0 then stop
return, Iflux
END
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